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We investigate the influence of different interaction strengths and dimerizations on the magnetization trans-
port in antiferromagnetic spin 1/2XXZ chains. We focus on the real-time evolution of the inhomogeneous
initial state u↑¯ ↑ ↓¯ ↓ l in using the adaptive time-dependent density-matrix renormalization groupsadap-
tive t-DMRGd. Time scales accessible to us are of the order of 100 units of time measured in" /J for almost
negligible error in the observables. We find ballistic magnetization transport for smallSzSz interaction and
arbitrary dimerization, but almost no transport for strongerSzSz interaction, with a sharp crossover atJz=1.
Additionally, we perform a detailed analysis of the error made by the adaptive time-dependent DMRG using
the fact that the evolution in theXX model is known exactly. We find that the error at small times is dominated
by the error made by the Trotter decomposition, whereas for longer times the DMRG truncation error becomes
the most important, with a very sharp crossover at some “runaway” time. Overall, errors are extremely small
before the “runaway” time.
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I. INTRODUCTION

The transport properties of spin chains have attracted
much attention recently, not only due to the possible appli-
cations to information storage, spintronics, and quantum in-
formation processing, but also because they allow us to study
general aspects of nonequilibrium dynamics in a comparably
simple system. Nonequilibrium phenomena are a vast and,
despite all progress, still poorly understood field of statistical
physics. It is therefore useful to have a simple model at hand
that allows us to study general questions rather explicitly. In
order to study nonequilibrium phenomena, a real-time de-
scription is particularly intuitive and useful. In this paper, we
study the time evolution of a spin-1

2 chain by solving the full
many-body Schrödinger equation.

Recently, new developments in the area of nonequilibrium
physics were stimulated by the experimental progress in the
field of ultracold atoms. These systems have the advantage
that their parameters can be tuned in time with high accuracy
and on very short time scales. It was proposed that spin-1

2
chains can be realized in these systems as wellf1–4g, namely
as a mixture of atoms of two species, sayA andB. If these
atoms are studied in an optical lattice with an average filling
of one atom per site and with a very strong repulsive inter-
action between the atoms, such that multiple occupancy is
suppressed, the system can be mapped onto an effective spin-
1
2 model. In this effective model, the state with atomA oc-
cupying a given lattice site corresponds to, say,↑, and like-
wise B to ↓.

In this paper, we study the time evolution of an initial
stateu↑¯ ↑ ↓¯ ↓ l sor uA¯AB¯Bld, i.e., with all spins on
the left half pointing up along thez axis, and all spins on the
right half pointing down, under the effect of a nearest-
neighbor spin interactionfsee Eq.s1dg. This system can also
be interpreted as an oversimplified picture for spin transport

between two coupled reservoirs of completely polarized
spins of opposite direction in the two reservoirs. We are
mainly interested in the following questions: Does the state
evolve into a simple long-time limit? If so, how is this limit
reached? On what properties does the long-time behavior
depend?

Analytical results for this problem are essentially re-
stricted to theXX chain with and without dimerization which
is amenable to an exact solutionf5,6g. In Ref. f5g, a scaling
relation for the long-time limit was found. However, it is
presently not known whether this relation is general or
whether it relies on special properties of theXX model. If a
long-time limit exists for other models as well, the question
arises as to which of its characteristics are universal, and
which depend on certain system properties.

Directly solving the time-dependent Schrödinger equation
for interacting many-body systems is highly nontrivial. A
recently developed numerical method, the adaptive time-
dependent DMRGf7–9g sadaptive t-DMRGd, enables us to
perform this task. The two main conditions for this method
to be applicable, namely that the system must be one-
dimensional and have nearest-neighbor interactions only, are
met for the present model. Efforts to generalize the DMRG
method to time-dependent problems relaxing these con-
straints are under wayf10g.

As so far no detailed error analysis of this new method
has been performed, an important aspect of the present work
is that besides their own physical interest, spin-1

2 chains pro-
vide an excellent benchmark for the adaptive time-dependent
DMRG, because of the nontrivial exact solution for theXX
model, against which the method can be compared. This al-
lows us to analyze the accuracy of the adaptive time-
dependent DMRG very explicitly, namely to address the
questions of what kinds of errors can occur in principle,
which ones of these dominate in practice, and how they can
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be minimized. We find that the time scales accessible to us
are about 100" /J, with a neglegible error in the observables
at very moderate numerical cost.

The outline of our paper is as follows. In Sec. II, we
introduce the model and its characteristics. In Sec. III, we
summarize the method, and in Sec. IV a detailed error analy-
sis is performed. These two sections may be skipped by read-
ers mainly interested in the physics and not in the details of
the method. In Sec. V, we present our results for the long-
time limit of the time evolution for different interaction and
dimerization strength.

II. MODEL AND INITIAL STATE

In this paper, we analyze the dynamics of the inhomoge-
neous initial state uinil= u↑¯ ↑ ↓¯ ↓ l on the one-
dimensional spin-12 chains with interactions given by the
Heisenberg model

H = o
n

JnsSn
xSn+1

x + Sn
ySn+1

y + JzSn
zSn+1

z d ; o
n

hn. s1d

Here,SWn is the spin operator on siten, andJn,Jz are inter-
action constants. We consider dimerized models where
Jz=const andJn=f1+s−1dndg , d being the dimerization co-
efficient. Ford.0, the “strong bond” withJn=1+d is cho-
sen to be at the center, where the spin flip of the initial state
is located.

We have chosen our energy unit such thatJn=1 for the
homogeneous cased=0. We also set"=1, defining time to
be 1/energy with the energy unit chosen as just mentioned.

The quantum phase diagram of this model at zero tem-
perature is well knownsseef11,12gd and sketched in Fig. 1.
For the homogeneous case,d=0, the ground state has ferro-
magneticsFMd / antiferromagneticsAFMd order with a gap
in the excitation spectrum forJz,−1 and Jz.1, respec-
tively. The gap closes ifuJzu approaches 1 from above, and
the model becomes critical for −1,Jz,1, i.e., gapless in the
thermodynamic limit, with correlation functions showing a
power-law decay. The model at the pointJz=d=0 is known
as theXX model. It has the special property that the spin-
current operatorJ=onjn is conserved, i.e.,fJ,Hg=0. Here
jn=JnImsSn

+Sn+1
− d is the current operator on the bond between

siten andn+1. For finite dimerization,dÞ0, the spectrum is
again gapped for all values ofJz.

Often it is useful to map the Heisenberg model onto a
model of spinless fermions,

H = o
n

JnF1

2
scn

†cn+1 + cn+1
† cnd + JzScn

†cn −
1

2
DScn+1

† cn+1

−
1

2
DG . s2d

In this picture, the first two terms in Eq.s1d describe nearest-
neighbor hopping, whereas the third termsthe one propor-
tional to Jzd describes a density-density interaction between
nearest neighbors. In particular, the caseJz=0 describes free
fermions on a lattice, and can be solved exactlyf13g.

The time evolution under the influence of a time-
independent HamiltonianH as in Eq.s1d is given by

ucstdl = Ustduinil with Ustd = exps− iHtd. s3d

In most of the phases shown in Fig. 1, the stateuinil
= u↑¯ ↑ ↓¯ ↓ l contains many high-energy excitations and
is thus far from equilibrium. In the following, we briefly
discuss these phases separately.

sid Deep in the ferromagnetic phase,Jz,−1, uinil corre-
sponds to a state with one domain wall between the two
degenerate ground states. ForJz→−`, it is identical to the
ground stateswith boundary conditions given byu↑ l and u↓ l
and Sz

tot=0d, and therefore stationary. For finiteJz, it is no
longer identical to the ground state, but still close to itf14g.

sii d In the antiferromagnetic phase,Jz.1, the stateuinil is
highly excited. One could view it as a state with almost the
maximum number of domain walls of staggered
magnetization.

In this context, it is interesting to note that the sign ofJz
does not matter for the time evolution of physical quantities,
as long as the initial state is described by a purely real wave
function swhich is the case for our choice ofuinild, since the
sign change inJz can be compensated by a gauge transfor-
mation that inverts the sign of the hopping termsSxSx, SySy

in Eq. s1d, plus a complex conjugation of Eq.s3d. In particu-
lar, the time evolution of the low-energy one-domain-wall
state in the FM is the same as the evolution of the high-
energy many-domain-walls state in the AFM. We therefore
restrict ourselves to the caseJz.0.

siii d In the critical phased=0 and uJzu,1, the ground
state is a state with power-law correlations in thexy plane.
Here, the stateuinil is not close to any particular eigenstate of
the system, but contains many excited states throughout the
energy spectrum, depending on the value ofJz: The energy
expectation value ofuinil is low asJz→−1 and high asJz

→1.
The time evolution delocalizes the domain wall over the

entire chain. ForJz=0, the time evolution of the system can
be solved exactly. For example, the magnetization profile for
the initial stateuinil readsf5g

Szsn,td = kcstduSn
zucstdl = − 1/2 o

j=1−n

n−1

Jj
2std, s4d

where Jj is the Bessel function of the first kind.n=… ,
−3, −2, −1, 0, 1, 2, 3,… labels chain sites with the con-
vention that the first site in the right half of the chain has the
label n=1.

FIG. 1. Quantum phase diagram of the Heisenberg model, Eq.
s1d. Seef11,12g for details.
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sivd In the dimerized phase,dÞ0, the mentioned charac-
teristics remain unchanged. However, here the delocalization
becomes confined to pairs of neighboring sites in the limit
d→1.

We finally note that the total energy and magnetization of
the system are conserved at all times, such that even for long
times the state cannot relax to the ground state.

III. OUTLINE OF THE ADAPTIVE TIME-DEPENDENT
DMRG FOR SPIN CHAINS

In order to determine the time evolution of Eq.s3d, we use
the adaptive t-DMRG methodf8,9g, which has been intro-
duced as an extension of standard DMRG using the TEBD
algorithm of Vidalf7g. It allows us to evaluate the time evo-
lution for one-dimensional quantum chains with nearest-
neighborspossibly time-dependentd interactions. In this pa-
per, we consider the case of a time-independent Hamiltonian
where the dynamics is introduced by a nonequilibrium initial
state att=0. To set the stage for the error analysis, we briefly
review adaptive t-DMRG, assuming the reader to be familiar
with standard static zero-temperature DMRGssee, e.g.,
f15,16gd.

In the standard finite-system DMRG algorithm, a
quantum-mechanical state on a one-dimensional chain withL
sites is represented in a particular tensor product basis,
namely as

ucl = o
astb

castbual1¯n−1uslnutln+1ubln+2¯L s5d

as illustrated in the upper part of Fig. 2. Here,usln, utln+1 are
complete bases on sitesn,n+1;ual1¯n−1 and ubln+2¯L are
states on the subchains with sites 1,…, n−1 and n
+2, … , L, respectively. The statesual1¯n−1 and ubln+2¯L
form truncated bases, i.e., they do not span the full Hilbert
space on their respective subchains, but only a subspace of
dimensionm, chosen to allow an optimal approximation of
the true physical state. In the representation of Eq.s5d, we
call site n the “active site.” The algorithm now consists of
moving s“sweeping”d the position of the active site several
times from the left to the right end of the chain and back, and
constructing optimized truncated bases for the subchains.

A DMRG step during such a sweep, say to the right, now
consists of a basis transformation from the oldstruncatedd
basisual1¯n−1uslnutln+1ubln+2¯L with active siten to a new
one ua8l1¯nus8ln+1ut8ln+2ub8ln+3¯L with active siten+1, as
shown in Fig. 2. The statesua8l1¯n representing the sites 1,
…, n are linear combinations of the old basis vectors
ual1¯n−1usln. Not all linear combinations are kept because of
the DMRG truncation that limits the number of states

ua8l1¯n to m states. For this reason, the stateucl can in
general be represented in the new basis only up to some
truncation error. The DMRG truncation algorithmsdescribed
in f15,16gd provides a unique optimal choice for the states
ua8l that minimizes this errorswhich is then typically as low
as 10−10 or sod and thus allows for the optimal representation
of particular “target” states. The basis vectorsub8ln+3¯L are
taken from stored values from the previous sweep to the left.
A sweep to the leftsi.e., from active siten to n−1d works in
the same way, with the role ofua8l and ub8l interchanged.

In standard DMRG, a mere transformation of the stateucl
from one basis to the other—known as White’s state predic-
tion f17g—is possible and accurate up to thessmalld trunca-
tion error. However, in order to optimize the basis states
iteratively for representing the target statessd ucl, new infor-
mation must be provided aboutucl, i.e., it must be newly
constructed using some unique criterionstypically as the
ground state of some Hamiltoniand. Without such a criterion
to “sweep against,” the accuracy cannot increase during
sweeps, and the procedure would be pointless. Merely trans-
forming ucl in this way is therefore of no use in standard
DMRG, and is in fact never performed alone. It is, however,
the basis of the adaptive t-DMRG.

The adaptive t-DMRG algorithm relies on the Trotter
decomposition of the time-evolution operatorUstd of Eq.
s3d, which is defined as follows: Using the relationUstd
=Usdt= t /MdM, the time-evolution operator is decomposed
into M time steps, whereM is a large number such that the
time intervaldt= t /M is small compared to the physical time
scales of the model. Since the Hamilton operator of Eq.s1d
can be decomposed into a sum of local termshn that live
only on sitesn andn+1, Usdtd can then be approximated by
an nth-order Trotter decompositionf18g, e.g., to second or-
der,

Usdtd = p
even

n

UnSdt

2
Dp

odd
n

Unsdtdp
even

n

UnSdt

2
D + Osdt3d. s6d

The Unsdtd are the infinitesimal time-evolution operators
exps−ihndtd on the bondsn seven or oddd. The ordering
within the even and odd products does not matter, because
“even” and “odd” operators commute among themselves.

Equations6d allows us to decompose the time-evolution
operatorUstd into many local operatorsUn that live on sites
n andn+1. The adaptive time-dependent DMRG now allows
us to apply the operatorsUn successively to some stateC.
Each operatorUn is applied exactly during sweeps in the
DMRG step withn being the active site, i.e., where sitesn
and n+1 are represented without truncationfcf. Eq. s5dg:
This way, the basis states chosen to represent optimally the
state beforeUn is applied,

ucl = o
astb

castbualuslnutln+1ubl, s7d

are equally well suited for representing the state

FIG. 2. Illustration of the DMRG bases with active siten and
n+1, respectively.
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Unucl = o
s8t8
astb

sUndst,s8t8cas8t8bualuslnutln+1ubl s8d

without any additional error, becauseUn only acts on the part
of the Hilbert spacesspanned by the vectorsuslnutln+1d that
is exactly represented.

To continue the sweep, a DMRG truncation is carried out
with Unucl being the target state instead ofucl. The key
observation is that the new truncated basis is optimally
adapted toUnucl and different from the one that would have
been chosen forucl. In contrast to the conventional static
DMRG f19g, the optimally represented Hilbert space hence
follows the time evolution of the stateucstdl.

Then basis transformations to the left or right are per-
formed, until the next part of Eq.s6d can be applied. We thus
apply the full operator of Eq.s6d by sweeping the active site
n through the system. The price to be paid is that a truncation
error is introduced at each iteration step of the sweep as is
known from static DMRG.

To start time-dependent DMRG, some initial state has to
be prepared. There is no unique recipe, the most effective
one depending on the desired initial state. The procedure we
adopt for our initial stateuinil is to calculate it as the ground
state of a suitably chosen HamiltonianHini swhich in prin-
ciple does not have to have any physical significanced. Such
a choice isHini =onBnSn

z, with Bn,0 for n on the left, and
Bn.0 for n on the right half of the chain. In this case, a
physical picture forHini does exist; it corresponds to switch-
ing on a magnetic field that aligns the spins and that is strong
enough for all interactions in Eq.s1d to be negligible.

IV. ACCURACY OF THE ADAPTIVE TIME-DEPENDENT
DMRG

As so far no quantitative analysis of the accuracy of the
adaptive t-DMRG has been given in the literature, we pro-
vide a detailed error analysis for the time evolution of the
initial state uinil in a spin-12 quantumXX chain, i.e.,Jz=d
=0. This system is an excellent benchmark for the adaptive
t-DMRG due to its exact solutionf5g that can be compared to
the DMRG results. The exact solution reveals a nontrivial
behavior with a complicated substructure in the magnetiza-
tion profile. From a DMRG point of view, this Hamiltonian
is not too specific in the sense that the experience from static
DMRG suggests a relatively weak truncation error depen-
dence onJz.

A. Possible errors

Two main sources of error occur in the adaptive t-DMRG.
sid The Trotter error due to the Trotter decomposition.

For annth-order Trotter decompositionf18g, the error made
in one time stepdt is of orderdtn+1. To reach a given timet,
one has to performt /dt time steps, such that in the worst
case the error grows linearly in timet and the resulting error
is of ordersdtdnt. In our setup of the Trotter decomposition,
the error scales linearly with system sizeL, and overall it is
of order sdtdnLt for the times of interest.sEventually, the
error must saturate at a finite value, as measured quantities

are typically bounded.d The linearL dependence of the error
is expected for generic initial states. For the particular choice
of uinil of this paper, however, many of theOsLd contribu-
tions to the Trotter error vanish, as many of the sites exhibit
no dynamics at all for short times. For the calculations pre-
sented in this paper, we have chosenn=2, but our observa-
tions should be generic.

sii d The DMRGtruncation errordue to the representation
of the time-evolving quantum state in reducedsalbeit “opti-
mally” chosend Hilbert spaces and to the repeated transfor-
mations between different truncated basis sets. While the
truncation errore that sets the scale of the error of the wave
function and operators is typically very small, here it will
strongly accumulate asOsLt /dtd truncations are carried out
up to time t. This is because the truncated DMRG wave
function has norm less than 1 and is renormalized at each
truncation by a factor ofs1−ed−1.1. Truncation errors
should therefore accumulate roughly exponentially with an
exponent of eLt /dt, such that eventually the adaptive
t-DMRG will break down at too long times. The error mea-
sure we use here saturates atOs1d and sets a limit on the
exponential growth; also, partial compensations of errors in
observables may slow down the error growth. The accumu-
lated truncation error should decrease considerably with an
increasing number of kept DMRG statesm. For a fixed time
t, it should decrease as the Trotter time stepdt is increased,
as the number of truncations decreases with the number of
time stepst /dt.

At this point, it is worthwhile to mention that our subse-
quent error analysis should also be pertinent to the very
closely related time-evolution algorithm introduced by Ver-
straeteet al. f20g, which differs from ours for the present
purpose in one major point: In our algorithm, a basis trunca-
tion is performed after eachlocal application ofUn. In their
algorithm, truncations are performed after all local time evo-
lutions have been carried out, i.e., after aglobal time evolu-
tion using U=pnUn. In our iterative procedure, the wave
function after such a full time evolution is not guaranteed to
be theglobally optimal state representing the time-evolved
state. However, for smalldt, the state update via the opera-
tors Un is likely to be small, so we expect the global opti-
mum to be rather well approximated using the present algo-
rithm, as seems to be borne out by direct comparisons
between both approachesf21g. Errors should therefore ex-
hibit very similar behavior.

We remind the reader that no error is encountered in the
application of the local time-evolution operatorUn to the
stateucl, as is discussed after Eq.s8d.

B. Error analysis for the XX model

In this section, we analyze the errors from the adaptive
t-DMRG in the time evolution of theXX model by compar-
ing it to the exact solutionf5g, with the ultimate goal of
finding optimal DMRG control parameters to minimize the
errors.

We use two main measures for the error.
sid As a measure for the overall error, we consider the

magnetization deviationthe maximum deviation of the local
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magnetization found by DMRG from the exact result,

Dmaxstd = maxnukSn,DMRG
z stdl − kSn,exact

z stdlu. s9d

In the present study, the maximum was typically found close
to the center of the chain.

sii d As a measure which excludes the Trotter error, we use
the forth-back deviationDFBstd, which we define as the de-
viation between the initial stateuinil and the stateucFBstdl
=Us−tdUstduinil, i.e., the state obtained by evolvinguinil to
some timet and then back tot=0 again. If we Trotter-
decompose the time evolution operatorUs−td into odd and
even bonds in the reverse order of the decomposition ofUstd,
the identity Us−td=Ustd−1 holds without any Trotter error,
and the forth-back deviation has the appealing property to
capture the truncation error only. In contrast to the magneti-
zation deviation, the forth-back error does not rely on the
existence of an exact solution.

As our DMRG setup does not allow easy access to the
fidelity zkini ucFBstdlz, we define the forth-back deviation to
be theL2 measure for the difference of the magnetization
profiles of uinil and ucFBstdl,

cFBstd = So
n

fkiniuSn
zuinil − kcFBstduSn

zucFBstdlg2D1/2
.

s10d

In order to control Trotter and truncation error, two
DMRG control parameters are available, namely the number
of DMRG statesm and the Trotter time stepdt.

To study the effect of varyingdt, consider themagnetiza-
tion deviationas shown in Fig. 3. Two main observations can
be made. At small timessregime Ad, the magnetization de-
viation decreases withdt and is linear int as expected from
the Trotter error. Indeed, as shown in the upper part of Fig. 4,
the magnetization deviation depends quadratically ondt for
fixed t, and the Trotter error dominates over the truncation
error. At large timessregime Bd, the magnetization deviation
is no longer linear int, but grows almost exponentially, and
also no longer shows simple monotonic behavior indt: The
magnetization deviation in this regime is obviously no longer

dominated by the Trotter error, but by the accumulated trun-
cation error.

The two regimes A and B are very clearly separated by
somerunaway time tR, with regime A fort, tR and regime B
for t. tR sa precise procedure for its determination will be
outlined belowd. The runaway timetR increases whendt is
increased: Because the total number of Trotter time steps
t /dt is decreased, the accumulated truncation error decreases,

FIG. 3. Magnetization deviation as a function
of time for different Trotter time stepsdt and for
m=50 DMRG states. At small timessregion A in
the insetd, the deviation is dominated by the lin-
early growing Trotter error for small times. At
later timessregion B in the insetd, much faster,
nonlinear growth of the deviation sets in at some
well-defined runaway timetR. As shown in the
inset,tR increases with increasingdt.

FIG. 4. Magnetization deviation as a function of Trotter time
step dt ssystem sizeL=100,m=50 DMRG statesd at times t=5
supper figured and t=30 slower figured. For t=5, the magnetization
deviation is quadratic indt as expected from the Trotter error. For
t=30, at smalldt the magnetization deviation is no longer quadratic
in dt and larger than the Trotter error would suggest. This is a signal
of the contribution of the accumulated truncation error.
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and the Trotter error increases, hence the competing two er-
rors break even later.

This dt dependence oftR is also seen in the lower part of
Fig. 4, where thedt dependence of the magnetization devia-
tion is plotted at some larger timest=30d than in the upper
part. t=30 is larger than the runaway timesi.e., in regime Bd
for dtø0.05, in regime A otherwise. We see indeed fordt
.0.05 sregion Ad the familiar quadratic Trotter error depen-
dence. For smalldtø0.05 sregion Bd, the deviation is domi-
nated by the accumulated truncation error that increases asdt
decreases. This is reflected in the growth of the magnetiza-
tion deviation asdt is decreased.

The almost exponential growth of the truncation error
with the number of Trotter steps can also be seen from the
forth-back deviation that is not susceptible to the Trotter er-
ror. In Fig. 5, we show the forth-back deviationEFBstd for
t=30 and t=50 as a function of the Trotter time stepdt.
EFBstd increases as a consequence of the stronger accumula-
tion of the truncation error with decreasing Trotter step size
dt and hence an increasing number of stepst /dt.

Let us now consider the dependence of the magnetization
deviation errstd on the second control parameter, the number
m of DMRG states. In Fig. 6, errstd is plotted for a fixed
Trotter time stepdt=0.05 and different values ofm. In agree-
ment with our previous observations, somem-dependent
“runaway time” tR separates two regimes: fort, tR sregime
Ad, the deviation grows essentially linearly in time and is
independent ofm; for t. tR sregime Bd, it suddenly starts to
grow more rapidly than any power law. The onset of a sig-
nificant m dependence has indeed been our operational defi-
nition of tR in Figs. 3 and 6. In the inset of Fig. 6,tR is seen
to increase roughly linearly with growingm. As m→` cor-
responds to the complete absence of the truncation error, the
m-independent bottom curve of Fig. 6 is a measure for the
deviation due to the Trotter error alone and the runaway time
can be read off very precisely as the moment in time when
the truncation error starts to dominate.

That the crossover from a dominating Trotter error at
short times and a dominating truncation error at long times is
so sharp may seem surprising at first, but can be explained
easily by observing that the Trotter error grows only linearly

in time, but the accumulated truncation error grows almost
exponentially in time. The latter fact is shown in Fig. 7,
where the forth-back deviationEFBstd is plotted as a function
of t for some fixedm. Here, we find that the effects of the
truncation error are below machine precision fort,10 and
then grow almost exponentially in time up to some satura-
tion.

By comparison, consider Fig. 8, whereEFBstd is plotted as
a function ofm, for t=30 andt=50. An approximately ex-
ponential increase of the accuracy of the method with grow-
ing m is observed for a fixed time. Our numerical results that
indicate a roughly linear time dependence oftR on m sinset
of Fig. 6d are the consequence of some balancing of very fast
growth of precision withm and decay of precision witht.

Before concluding this section, let us briefly consider a
number of other possible effects that might affecttR. One

FIG. 5. The forth-back errorEFBstd for t=30 and t=50 as a
function of dt. Here,L=100,m=50.

FIG. 6. Magnetization deviationDMstd as a function of time for
different numbersm of DMRG states. The Trotter time interval is
fixed at dt=0.05. Again, two regimes can be distinguished: For
early times, for which the Trotter error dominates, the error is
slowly growingsessentially linearlyd and independent ofm sregime
Ad; for later times, the error is entirely given by the truncation error,
which is m-dependent and growing fastsalmost exponential up to
some saturation; regime Bd. The transition between the two regimes
occurs at a well-defined “runaway time”tR ssmall squaresd. The
inset shows a monotonic, roughly linear dependence oftR on m.

FIG. 7. The forth-back errorEFBstd for L=100,m=40, dt
=0.01, anddt=0.05 as a function oft.
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might alternatively conceive that the well-defined runaway
time tR results from a sudden failuresof stochastic or of
fundamental natured of the truncation algorithm to capture
one important basis state. It can be refuted on the basis of
Fig. 5, Fig. 7, and Fig. 8: Such an error should manifest itself
as a pronounced step inEFBstd, depending on the time evo-
lution having gone pasttR or not. Such a step is, however,
not observed.

tR might also be thought to reflect a fundamental DMRG
limit, namely a growth of the entanglement within the time-
evolved state which the limited number of DMRG statesm is
not able to capture adequately att. tR. This scenario can be
excluded by observing the strong dependence oftR on the
number of time steps, which this scenario cannot explain.
Indeed, a study of the entanglement entropy between the left
and the right half of the chain

Sestd = Tr r̂ log2r̂, s11d

r̂ being the reduced density matrix of the leftsor equiva-
lently the rightd half of the chain, confirms this view: As
shown in Fig. 9,Sestd is only mildly growing with time and

is well below the maximum entanglement entropySmax
, log2m that the DMRG can reproduce.

Therefore, we conclude that the error at short times is
dominated by the Trotter error, which is independent ofm
and approximately growing linearly with time. At some run-
away time, we observe a sharp crossover to a regime in
which the m-dependent and almost exponentially growing
truncation error is dominating. This crossover is sharp due to
drastically different growth of the two types of errors. The
runaway time thus indicates an imminent breakdown of the
method and is a good, albeit very conservative, measure of
available simulation times. We expect the above error analy-
sis for the adaptive t-DMRG to be generic for other models.
The truncation error will remain also in approaches that dis-
pose of the Trotter error; maximally reachable simulation
times should therefore be roughly the same or somewhat
shorter if other approximations enhance the truncation error.

C. Optimal choice of DMRG parameters

How can the overall error—which we found to be a deli-
cate balance between the Trotter and the accumulated trun-
cation error—be minimized and the important runaway time
be found in practice? From the above scenario, it should be
expected that the truncated density matrix weight at each
step does not behave differently before or after the runaway
time and hence is no immediately useful indicator to identify
the runaway time. This can in fact be seen from Fig. 10,
where the truncated weight is shown for the same parameters
as in Fig. 3. Also, it is not obvious to extract a precise rela-
tionship between the truncation errors at each DMRG trun-
cation and the accumulated errors. Instead, a precise conver-
gence analysis inm or dt seems to be more telling and easily
feasible.

Of course, it is desirable to choose the number of kept
statesm as large as possible within the constraints regarding
the available computer resources. This choice having been
made, the runaway timetR is determined for different Trotter

FIG. 8. The forth-back errorEFBstd for t=50 and t=30 as a
function of m. Here,L=100,dt=0.05.

FIG. 9. Entanglement entropySe from Eq. s11d between the left
and the right half of the chain as a function of time.

FIG. 10. The lost weight in the density matrix truncation,
summed over time intervalsDt=0.1, is shown for the same param-
eters as in Fig. 3. A comparison with Fig. 3 reveals, however, that
both values are not useful criteria for the DMRG truncation error
and are in particular not suited to reveal the runaway timetR.
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time stepsdt by comparing different values ofm as in Fig. 6.
Only two slightly different values ofm are sufficient for that
purpose. Now the Trotter time stepdt is chosen such that the
desired timet is just belowtR. This way, the optimal balance
between the Trotter error and the truncation error is found,
which corresponds in the lower part of Fig. 4 to the mini-
mum of errstd on the border between regime A and B: The
total error would increase at largerdt due to the Trotter error,
and at smallerdt due to the truncation error.

Thus, it is a good practice to choose for small times rather
small values ofdt in order to minimize the Trotter error; for
large times, it makes sense to choose a somewhat coarser
time interval, in order to push the runaway time to as large
values as possible.

In terms of numbers of time steps, we conclude from
Fig. 3 that for the present model and our parameterssL
=100−200d, the adaptive time-dependent DMRG seems to
be able to perform about 1000–5000 time steps reliably even
for m=50, depending on the desired level of accuracy, cor-
responding toOs100/Jd in “real” time. We note that this is a
very small value ofm by DMRG standards, and that using an
optimized code, one should be able to increasem by an order
of magnitude, and hence access much longer timessby an
order of magnituded.

V. LONG-TIME PROPERTIES OF THE TIME EVOLUTION

In f5,22g, the time evolution of the initial stateuinil on the
XX chain at temperatureT=0 was examined in the long-time
limit using the exact solution. It was found that the magne-
tization Szsn,td given in Eq. s4d can be described for long
times in terms of a simple scaling function,Szsn,td<Ffsn
−ncd / tg, where nc is the position of the chain center. The
scaling function is the solution of the partial differential
equation ]tSz+]xjsSzd=0 with the magnetization current
jsSzd=1/pcosupSzu which has been shown to describe the
macroscopic time evolution of the magnetization profilef5g.
The characteristics, i.e., the lines of constant magnetization
Sz, have a slopev=sinupSzu.

The magnetization profileFfsn−ncd / tg has a well-defined
front at sn−ncd / t= ±1, i.e., is moving outwards ballistically

with velocity v=1. On top of this overall scaling form, an
additional steplike substructure arises, which was analyzed
in detail in f22g. It was found that while the step width
broadens ast1/3, the step height decreases ast−1/3, such that
the integrated transported magnetization within each step re-
mains constant at 1. It was suggested that each of these steps
corresponds to a localized flipped spin flowing outwards.

The XX model, however, has several very special proper-
ties: It corresponds to a free-fermion model and is therefore
exactly solvable; it is critical; and its total current operator
J=onjn commutes with the Hamiltonian,fJ,Hg=0. One may
ask whether the above findings are due to any of the particu-
larities of theXX model or more generic.

The adaptive t-DMRG allows us to study the long-time
evolution ofuinil in different coupling regimes of Eq.s1d. We
chose two extensions of theXX model, namely anSzSz inter-
action, and dimerization.

In Figs. 11 and 12, we visualize the time evolution of the
local magnetization in density plots, with site indexn on the
x axis and timet on they axis. Here, the absolute value of
the magnetization is shown as a grayscale and in lines of
constant magnetization atukSzlu=0.2, 0.4. In Fig. 11, the re-
lation between the density plots and the actual magnetization
profile for the XX model is shown at two times,t=0 and
t=40. The exact solution is perfectly reproduced, including
the detailed substructure of the magnetization profile.

In Fig. 12, density plots for various values ofJz between
0 and 1.1 are shown. For smallJzsJz,1d, we observe ballis-
tic transport of the magnetization. This regime is character-
ized by a constant transport velocity of the magnetization,
hence the lines of constant magnetization shown in Fig. 12
are approximately straight forJz,1. The magnetization
front propagation slows down asJz increases, and almost
comes to a halt whenJz.1. Although the sharpness of this
crossover atJz=1 is surprising, its general nature can be
understood from the limitsJz→0 and uJzu→`: For small
Jz→0, theSxSx andSySy interactions dominate. Being spin-
flip terms, they smear out the initially hard step profile in the
z magnetization. For largeJz, on the other hand, theSzSz

interaction dominates. This term does not delocalize the step
profile, and in the limituJzu→`, the initial state is even a
stationary eigenstate of the Hamiltonian.

FIG. 11. Left: Time evolution
of the absolute value of the local
magnetizationukSn

zstdlu for the XX
model as a density plot, where the
local magnetization itself is ex-
actly antisymmetric with regard to
the chain center. The lines of con-
stant magnetization kSn

zl
= ±0.2, ±0.4 are shown as solid
lines. As an illustration, local
magnetizationskSn

zstdl for the time
slices t=0 and t=40 are shown
explicitly. A steplike substructure
can be seen fort=40 in perfect
quantitative agreement with the
exact solution. Error bars are be-
low visibility.
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FIG. 12. Density plots of the magnetizationukSn
zstdlu as in Fig. 11, the values ofJz beingsfrom left to right, top to bottomd 0, 0.3, 0.6, 0.9,

1.0, 1.1, andd=0. For better visibility of the profile, the grayscale mapping ofukSn
zstdlu was chosen differently in each plot as indicated by

the legends. Solid lines: lines of constant magnetizationkSn
zl= ±0.2, ±0.4; these allow for a direct comparison of the magnetization transport

between differentJz. The raylike structure indicates the “carriers.”
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Besides the structure of the overall front, we also observe
for JzÞ0 remnants of the steplike substructure from theXX
model, individual pockets of transported magnetization at
velocity 1, which we call “carriers.” AsJz is increased, these
carriers keep the velocityv<1, but are increasingly damped
and thus less and less effective in transporting magnetization.

In order to put the above observations on a more quanti-
tative footing, we plot in Fig. 13 the integrated flow of mag-
netization through the center,

DMstd =E
0

t

k jL/2st8dldt8 = o
n.L/2

L

fkSn
zstdl + 1/2g. s12d

This quantity has the advantage that unlike the lines of con-
stant magnetization in Figs. 11 and 12, it shows the overall
spin transport without being too biased by single “carriers.”

We observe in Fig. 13 roughly linear behavior ofDMstd
for uJzu,1, which suggests ballistic magnetization transport
at least on the time scales accessible to us. AsJz increases,
magnetization transport slows down until aroundJz=1 the
behavior changes drastically: ForJz.1, DMstd seems to
saturate at a finite value, around which it oscillates. On the
time scales accessible to us, we thus find a sharp crossover at
Jz=1 from ballistic transport to an almost constant magneti-
zation.

This crossover is even more clearly visible in Fig. 14,
where we plot the exponenta of the magnetization,DMstd
~ ta, for valuesJz between 0 and 1.5. Here, the exponenta is
close to 1 forJz,1, confirming the roughly linear transport,
and quickly drops to zero in the regime of constant magne-
tization for Jz.1.

Figure 15 illustrates how the exponenta was obtained, for
the special caseJz=1. Here the exponenta=0.6±0.1 indi-
cates that the magnetization transport is clearly not ballistic
anymore. In fact, we find from a scaling plot Fig. 16 that for
long times the magnetization collapses best for a scaling
function of the formSzsn,td,fsn/ t0.6d with an uncertainty
in the exponent of approximately 0.1, indicating superdiffu-

sive or diffusive transport in the time range under consider-
ation.

The proposed crossover from ballistic to almost no trans-
port is also visible in the expectation value of the current
jn=JnImskSn

+Sn+1
− 0ld. For Jz=d=0, it is known f5g that the

current at the middle of the chain approaches a finite value as
t→`. This is only possible for ballistic transport. In the case
of ssub/superddiffusive transport or constant/oscillatory mag-
netization, on the other hand, the central current must fall off
to zero as the magnetization gradient flattens or must even
become negative to allow for the oscillations.

This expected behavior is seen in Fig. 17, where we plot
the current at the center of the chain as a function of time for
various values ofJz between 0 and 1.1. We averaged the
current over the five middle sites in order to filter out local
current oscillations. We observe that for relatively long
times, the current approaches a constant value foruJzu,1,
whereas the current falls off rapidly and then seems to ex-
hibit damped oscillations around zero foruJzu.1. This

FIG. 13. The change in the magnetizationDMstd is shown. The
curves are plotted in the orderJz=0, 0.3, 0.6, 0.9, 1.0, 1.1, and 1.5,
whereJz=0 is the steepest. The curvesJz=0, 0.3, 0.6, and 0.9 show
the same linear behavior for the observed times, i.e., up tot=60.

FIG. 14. Best fit for the exponenta in DMstd~ ta, for the data
shown in Fig. 13 and for times betweent=20 andt=60. We esti-
mate the uncertainty ina to be of the order of 0.1 due to the limited
time availablescf. Fig. 15d. It was not possible to fit the slow
oscillations forJz=1.1. To the eye, however, the curve in Fig. 13
suggests slow oscillations around a constant value, hence we in-
cluded in the data pointa=0 for Jz=1.1 by handsencircledd.

FIG. 15. Jz=1: The change of the magnetization in a double
logarithmic plot with an algebraic fit.
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strengthens our previous conclusion of a crossover from bal-
listic transport to a more or less constant magnetization at
uJzu=1.

Remarkably, this crossover for the behavior of a high-
energy quantum stateuinil is found at the locationJz=1 of
the quantum phase transition from the critical phase to the
Néel antiferromagnetic statessee Fig. 1d, a priori a low-
energy event. To understand the subtle connection between
the time evolution ofuinil and the phase transition, we ex-
ploit that the time evolution does not depend on the sign of
Jz, as discussed in Sec. II. Therefore, the time evolution of
the high-energy stateuinil for Jz.1 is identical to that for
Jz8=−Jz,−1, whereuinil is a low-energy state. At the quan-
tum phase transition from the ferromagnetic state to the
critical phase atJz8=−1, the ground state, a kink state for
Jz8,−1 sif we impose the boundary condition spin up on the
left boundary and spin down on the right boundaryd f14g,
changes drastically to a state with no kink and power-law
correlations forJz8.−1. Therefore, our initial state is very
close to an eigenstate—the ground state—forJz8,−1, but
not for Jz8.−1. Thus, the harsh change in the time evolution
of the high-energy stateuinil at Jz=1 can be explained by the
severe change in the ground-state properties atJz8=−1, and
the crossover is linked to a quantum phase transition at a
different location in the phase diagram.

We now study the influence of a nonzero dimerizationd
in Eq. s1d. We restrict our analysis to the caseJz=0. The
dimerized models can still be described in terms of the free-
fermion picture and are exactly solvablesfor static proper-
ties, seef12gd. The current, however, is not conserved for
nonzero dimerization. This example will shed light on the
question of whether the long-time limit depends on current
conservation or on the free-fermion property, or on yet other
special properties of the system. As the dimerized case is
also exactly solvable, the results could have been obtained
also analytically, for example by utilizing the results for the
Fourier transformation of the magnetizationkSzsq,tdl of Ref.
f6g. We expect two obvious effects of nonzero dimerization.
First, the overall front velocity should slow down, because
the magnetization now propagates faster on half of the links,
but slower on the other half, the net effect being a reduction
of the total velocity. Secondly, we expect oscillations with a
period of two lattice sites. This is obvious in the limit
d→1, where each strongly coupled pair of sites can be
viewed as an almost isolated subsystem, in which the mag-
netization oscillates back and forth. We expect remnants of
this behavior also at dimerizationsudu,1.

The data shown in Fig. 18 confirm this expectation quali-
tatively, but do not reveal any other qualitative change of the
long-time limit for nonzero dimerization. Ford=1, the sys-
tem is trivially given by isolated pairs of neighboring sites,
therefore the propagation velocity drops to zero.

Figures 19 and 20 reveal explicitly that no qualitative
change occurs as the dimerization is switched on: the change
in magnetizationDMstd still shows the linear behavior typi-
cal of ballistic transport. For increasingd→1, oscillations on
top of this linear behavior arise. We find that switching on
finite dimerization does not change the long-time behavior of
the time evolution also for nonzeroJz snot shownd. In par-
ticular, the time evolution here is drastically influenced by
the transition atJz=1, as in the cased=0 discussed above.

To summarize, we find the same long-time behavior of the
initial state u↑¯ ↑ ↓¯ ↓ l in the dimerized system—a sys-
tem with a gapped excitation spectrum and which is exactly
solvable—as in the system with smallSzSz interaction,uJzu
,1—a system which is critical—whereas the behavior
changes drastically for largerSzSz interaction,uJzu.1. Hence
we cannot attribute the ballistic transport of the magnetiza-
tion to the specific properties of theXX model, neither to
being exactly solvable, nor to the continuous spectrum, nor
to the conserved current in theXX model. The drastic change
at uJzu=1 stems from the special property of the initial state to
resemble the ground state in the ferromagnetic phase and the
highest-energy state in the antiferromagnetic phase.

Finally, let us include a note on the errors in the present
analysis. A convergence analysis inm as in Sec. IV shows
that the errors and the runaway time are roughly the same as
for the XX model. The plot in Fig. 12 goes up to time
t=95, whereas the runaway timetR is somewhat earlier,
tR<60−80, depending on the precise value ofJz. Indeed, a
convergence analysis inm reveals that the accuracy in the
central region decreases fort. tR. For dimerized models, the
runaway timetR is somewhat shortersbetweentR=40 and
tR=80 for m=50, depending on the dimerizationd. This fact
reflects the reduced accuracy of the DMRG algorithm when

FIG. 16. Jz=1: Collapse of magnetization for a superdiffusive
scaling formsx/ t0.6d.

FIG. 17. Current, averaged over the five middle sites, for vari-
ous values ofJz between 0 and 1.1.
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FIG. 18. Density plots of the magnetizationkSn
zstdl as in Fig. 12, for dimerizationsfrom left to right, top to bottomd d=0, 0.2, 0.4, 0.6,

0.8, 1.0, andJz=0. The grayscale mapping is different in each plot as indicated by the legends. Solid lines: lines of constant magnetization
kSn

zl= ±0.2, ±0.4.
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dealing with inhomogenous systems. As always, it is pos-
sible to increasetR by increasingm.

VI. CONCLUSIONS

We have investigated the evolution of the initial state
u↑¯ ↑ ↓¯ ↓ l under the effect of nearest-neighbor interac-
tions with the adaptive time-dependent DMRG.

For weakSzSz interaction, i.e.,uJzu,1 in Eq. s1d, and ar-
bitrary dimerization, 0ød,1, we find that for long times
the transport of the magnetization is ballistic as it was found
for the XX model f5g. The magnetization profile shows the
same scaling form for long times, i.e.,Szsn,td=wfsn−ncd / tg,
wherenc is the position of the chain center, but with different
scaling functionsw. For strongerSzSz interaction, i.e.,uJzu
.1, even in a homogeneous system,d=0, a drastic change
in the long-time evolution is seen. The magnetization trans-
port is no longer ballistic, but shows oscillatory behavior
around a constant value. Hence our results suggest that the
specific properties of theXX model are not responsible for
ballistic transport at long times. The drastic change in the

long-time behavior at the phase transitionJz=1 can be attrib-
uted to the close resemblance of the initial state to the ground
state forJz,−1.

Our error analysis for the adaptive time-dependent
DMRG shows that for small times, the error is dominated by
the Trotter error, whereas for long times, the truncation error
becomes the most important. This finding should be general
and hold for nonexactly solvable models as well, and should
therefore allow us to control the accuracy of the results of
adaptive time-dependent DMRG in general models. Overall,
we find this method to be very precise at relatively long
times.
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