PHYSICAL REVIEW E 71, 036102(2005

Real-time dynamics in spin-% chains with adaptive time-dependent density matrix
renormalization group

Dominique Gobert;? Corinna Kollath™? Ulrich Schollwéck! and Gunter Schiitz
Ynstitute for Theoretical Physics C, RWTH Aachen, D-52056 Aachen, Germany
%physics Department and CeNS, LMU Miinchen, Theresienstrasse 37, D-80333 Miinchen, Germany
3Institut fur Festkorperforschung, Forschungszentrum Jilich, D-52425 Jiilich, Germany
(Received 7 October 2004; published 3 March 2005

We investigate the influence of different interaction strengths and dimerizations on the magnetization trans-
port in antiferromagnetic spin 1/2XZ chains. We focus on the real-time evolution of the inhomogeneous
initial state|T---1 |-+ ]) in using the adaptive time-dependent density-matrix renormalization gemgp-
tive t-DMRG). Time scales accessible to us are of the order of 100 units of time measuiéd fior almost
negligible error in the observables. We find ballistic magnetization transport for S#linteraction and
arbitrary dimerization, but almost no transport for stron§& interaction, with a sharp crossover Xt 1.
Additionally, we perform a detailed analysis of the error made by the adaptive time-dependent DMRG using
the fact that the evolution in théX model is known exactly. We find that the error at small times is dominated
by the error made by the Trotter decomposition, whereas for longer times the DMRG truncation error becomes
the most important, with a very sharp crossover at some “runaway” time. Overall, errors are extremely small
before the “runaway” time.
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[. INTRODUCTION between two coupled reservoirs of completely polarized

. . . pins of opposite direction in the two reservoirs. We are
The transport properties of spin chains have_ attracte ainly interested in the following questions: Does the state

much attention recently, not only due to the possible applig,gjye into a simple long-time limit? If so, how is this limit

cations to information storage, spintronics, and quantum iNfeached? On what properties does the long-time behavior
formation processing, but also because they allow us to studyepend?

general aspects of nonequilibrium dynamics in a comparably Analytical results for this problem are essentially re-
simple system. Nonequilibrium phenomena are a vast andtricted to thexX chain with and without dimerization which
despite all progress, still poorly understood field of statisticals amenable to an exact solutif®,6]. In Ref.[5], a scaling
physics. It is therefore useful to have a simple model at hangelation for the long-time limit was found. However, it is
that allows us to study general questions rather explicitly. Irpresently not known whether this relation is general or
order to study nonequilibrium phenomena, a real-time dewhether it relies on special properties of t§& model. If a
scription is particularly intuitive and useful. In this paper, we |ong-time limit exists for other models as well, the question
study the time evolution ofaspibchain by solving the full  arises as to which of its characteristics are universal, and
many-body Schrodinger equation. which depend on certain system properties.

Recently, new developments in the area of nonequilibrium  Directly solving the time-dependent Schrédinger equation
physics were stimulated by the experimental progress in theor interacting many-body systems is highly nontrivial. A
field of ultracold atoms. These systems have the advantagecently developed numerical method, the adaptive time-
that their parameters can be tuned in time with high accuracgependent DMRG7-9] (adaptive t-DMRG, enables us to
and on very short time scales. It was proposed that J5‘.pin—perform this task. The two main conditions for this method
chains can be realized in these systems as|iel], namely  to be applicable, namely that the system must be one-
as a mixture of atoms of two species, sayndB. If these  dimensional and have nearest-neighbor interactions only, are
atoms are studied in an optical lattice with an average fillingmet for the present model. Efforts to generalize the DMRG
of one atom per site and with a very strong repulsive intermethod to time-dependent problems relaxing these con-
action between the atoms, such that multiple occupancy istraints are under waji0].
suppressed, the system can be mapped onto an effective spin-As so far no detailed error analysis of this new method
% model. In this effective model, the state with atéxoc-  has been performed, an important aspect of the present work
cupying a given lattice site corresponds to, sgyand like- is that besides their own physical interest, sﬁiohains pro-
wiseB to |. vide an excellent benchmark for the adaptive time-dependent

In this paper, we study the time evolution of an initial DMRG, because of the nontrivial exact solution for tKx
state|T---7]---]) (or|A---AB---B)), i.e., with all spins on model, against which the method can be compared. This al-
the left half pointing up along theaxis, and all spins on the lows us to analyze the accuracy of the adaptive time-
right half pointing down, under the effect of a nearest-dependent DMRG very explicitly, namely to address the
neighbor spin interactiofsee Eq(1)]. This system can also questions of what kinds of errors can occur in principle,
be interpreted as an oversimplified picture for spin transpornivhich ones of these dominate in practice, and how they can
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FIG. 1. Quantum phase diagram of the Heisenberg model, Ectional to J,) describes a density-density interaction between

(1). See[11,12 for details. nearest neighbors. In particular, the cdse0 describes free
fermions on a lattice, and can be solved exafi§].

be minimized. We find that the time scales accessible to us The time evolution under the influence of a time-

are about 100/J, with a neglegible error in the observables independent Hamiltonial as in Eq.(1) is given by

at very moderate numerical cost. _ - . _ .

The outline of our paper is as follows. In Sec. Il, we [4(1) =UOlini) - with U(t) = exp(-Ht). )
introduce the model and its characteristics. In Sec. lll, we |n most of the phases shown in Fig. 1, the stfng)
summarize the method, and in Sec. IV a detailed error analy=|1---1 | --- | ) contains many high-energy excitations and
sis is performed. These two sections may be skipped by reags thus far from equilibrium. In the following, we briefly
ers mainly interested in the physics and not in the details ofliscuss these phases separately.
the method. In Sec. V, we present our results for the long- (i) Deep in the ferromagnetic phask<-1, |ini) corre-
time limit of the time evolution for different interaction and sponds to a state with one domain wall between the two
dimerization strength. degenerate ground states. Ror-—, it is identical to the
ground statéwith boundary conditions given by ) and|| )
and S*'=0), and therefore stationary. For finitg, it is no
longer identical to the ground state, but still close tplif].

In this paper, we analyze the dynamics of the inhomoge- (ii) Inthe antiferromagnetic phasg> 1, the s_tatéini) is
neous initial state [iniy=|7---7[---|) on the one- hlgh!y excited. One could view it as a state with almost the

maximum number of domain walls of staggered
magnetization.

In this context, it is interesting to note that the signJof
does not matter for the time evolution of physical quantities,
H=2 0SS+ St LSS =2 (D) as long as the initial state is described by a purely real wave

n " function (which is the case for our choice fhi)), since the

IIl. MODEL AND INITIAL STATE

dimensional spirt} chains with interactions given by the
Heisenberg model

R sign change inJ, can be compensated by a gauge transfor-
Here, S, is the spin operator on site, andJ,,J, are inter-  mation that inverts the sign of the hopping ter8f§*, 'S
action constants. We consider dimerized models whergh Eq. (1), plus a complex conjugation of E(B). In particu-
J*=const andJ,=[1+(-1)"s], & being the dimerization co- |ar, the time evolution of the low-energy one-domain-wall
efficient. For5>0, the “strong bond” with],=1+45 is cho-  state in the FM is the same as the evolution of the high-
sen to be at the center, where the spin flip of the initial stateénergy many-domain-walls state in the AFM. We therefore
is located. restrict ourselves to the cadg>0.

We have chosen our energy unit such that1 for the (iii) In the critical phases=0 and|J]<1, the ground
homogeneous casé=0. We also sefi=1, defining time to  state is a state with power-law correlations in syeplane.
be 1/energy with the energy unit chosen as just mentionedHere, the staténi) is not close to any particular eigenstate of
The quantum phase diagram of this model at zero temthe system, but contains many excited states throughout the
perature is well knowrisee[11,12)) and sketched in Fig. 1. energy spectrum, depending on the valuelpfThe energy
For the homogeneous cas®: 0, the ground state has ferro- expectation value ofini) is low asJ*— -1 and high as}?
magnetic(FM) / antiferromagnetidAFM) order with a gap — 1.
in the excitation spectrum fod,<-1 and J,>1, respec- The time evolution delocalizes the domain wall over the
tively. The gap closes ifJ,| approaches 1 from above, and entire chain. Fod,=0, the time evolution of the system can
the model becomes critical for <1J,<1, i.e., gaplessin the be solved exactly. For example, the magnetization profile for
thermodynamic limit, with correlation functions showing a the initial stateini) reads[5]
power-law decay. The model at the poilht §=0 is known
as thexXX model. It has the special property that the spin-
current operatod=2,j, is conserved, i.e[J,H]=0. Here SAn.H) = (YOSt = - 1/2__21_ ‘]iz(t)' (4)
in=3.Im(S:S,,,) is the current operator on the bond between =
siten andn+1. For finite dimerizationg+ 0, the spectrumis where J; is the Bessel function of the first kinch=...,

n-1

again gapped for all values df. -3,-2,-1,0,1, 2, 3,.. labels chain sites with the con-
Often it is useful to map the Heisenberg model onto avention that the first site in the right half of the chain has the
model of spinless fermions, labeln=1.
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site 12 non+lne2 -1 L |a’)1.., to m states. For this reason, the std# can in

active site = n _ .[. o0 ] general be represented in the new basis only up to some

truncation error. The DMRG truncation algorithialescribed

o in [15,16]) provides a unique optimal choice for the states
active site = n+1[. o ® .J o0 |a’) that minimizes this errofwhich is then typically as low
as 10%or sg and thus allows for the optimal representation
of particular “target” states. The basis vectggs),,s.., are
taken from stored values from the previous sweep to the left.
A sweep to the lefti.e., from active siten to n—1) works in

(|V) In the dimerized phas@?f 0, the mentioned charac- the same way, with the role ¢h’> and|ﬂ’> interchanged_
teristics remain unchanged. However, here the delocalization |n standard DMRG, a mere transformation of the steje
becomes confined to pairs of neighboring sites in the limitfrom one basis to the other—known as White’s state predic-
o—1. tion [17]—is possible and accurate up to ttemnal) trunca-

We finally note that the total energy and magnetization ofjon error. However, in order to optimize the basis states
the system are conserved at all times, such that even for |0r193ratively for representing the target s@d), new infor-
times the state cannot relax to the ground State. mation must be provided aboW}l i_e_' it must be new|y
constructed using some unique criterigiypically as the
ground state of some HamiltoniartWithout such a criterion
to “sweep against,” the accuracy cannot increase during
sweeps, and the procedure would be pointless. Merely trans-

In order to determine the time evolution of E§), we use  forming |¢) in this way is therefore of no use in standard
the adaptive t-DMRG methofB,9], which has been intro- DMRG, and is in fact never performed alone. It is, however,
duced as an extension of standard DMRG using the TEBDhe basis of the adaptive t--DMRG.
algorithm of Vidal[7]. It allows us to evaluate the time evo-  The adaptive t-DMRG algorithm relies on the Trotter
lution for one-dimensional quantum chains with nearestdecomposition of the time-evolution operatd(t) of Eq.
neighbor(possibly time-dependeninteractions. In this pa- (3), which is defined as follows: Using the relatidus(t)
per, we consider the case of a time-independent Hamiltoniaa U(dt=t/M)M, the time-evolution operator is decomposed
where the dynamics is introduced by a nonequilibrium initialinto M time steps, wherd is a large number such that the
state at=0. To set the stage for the error analysis, we brieflytime intervaldt=t/M is small compared to the physical time
review adaptive t-DMRG, assuming the reader to be familiaiscales of the model. Since the Hamilton operator of &j).
with standard static zero-temperature DMRGee, e.g., can be decomposed into a sum of local teimsthat live
[15,16)). only on sitesn andn+1, U(dt) can then be approximated by

In the standard finite-system DMRG algorithm, a an nth-order Trotter decompositiofi8], e.g., to second or-
quantum-mechanical state on a one-dimensional chainlwith ger,

sites is represented in a particular tensor product basis,
namely as

. at
0= St dedinpae . w CO=TU{G]Tu@ITu( 0w, ©

aoTf even odd even

FIG. 2. lllustration of the DMRG bases with active siteand
n+1, respectively.

Ill. OUTLINE OF THE ADAPTIVE TIME-DEPENDENT
DMRG FOR SPIN CHAINS

as illustrated in the upper part of Fig. 2. Hej&),,,| 7.1 are
complete bases on sitegn+1;|a);..,.; and |B)n... are  The Uy(dt) are the infinitesimal time-evolution operators
states on the subchains with sites 1,, n—-1 and n  exp(-ih,dt) on the bondsn (even or oddl The ordering
+2,..., L, respectively. The statelg);...,.; and |B)no..  Wwithin the even and odd products does not matter, because
form truncated bases, i.e., they do not span the full Hilberteven” and “odd” operators commute among themselves.
space on their respective subchains, but only a subspace of Equation(6) allows us to decompose the time-evolution
dimensionm, chosen to allow an optimal approximation of operatorU(t) into many local operator§,, that live on sites
the true physical state. In the representation of &j. we  nandn+1. The adaptive time-dependent DMRG now allows
call site n the “active site.” The algorithm now consists of us to apply the operatold, successively to some statfie.
moving (“sweeping’) the position of the active site several Each operatoJ,, is applied exactly during sweeps in the
times from the left to the right end of the chain and back, andMRG step withn being the active site, i.e., where sites
constructing optimized truncated bases for the subchains. and n+1 are represented without truncatipef. Eq. (5)]:
A DMRG step during such a sweep, say to the right, nowThis way, the basis states chosen to represent optimally the

consists of a basis transformation from the @dincatedd  state beforeJ, is applied,

basis|a)1...n-1|0)n Dnsa] Bins2 ... With active siten to a new

one |a' 1.0 0" Vet T nsal B dnea ... With active siten+1, as

shov|vn in F|ig. 2. '|rhe st|ate$&’3§l...n representing the sites 1, )= 2 Yaorgl @0 Dneal B, (7)

.., n are linear combinations of the old basis vectors ao7p

|@)1...n-1]l0)n. Not all linear combinations are kept because of

the DMRG truncation that limits the number of statesare equally well suited for representing the state
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Uy = S (U)ot o g )| Dreal B) (8) are typically boundedl.The linearL dependence of the error
. o m Rt A mem is expected for generic initial states. For the particular choice

a7 of |ini) of this paper, however, many of tf@(L) contribu-
without any additional error, becausk only acts on the part tions to the Trotter error vanish, as many of the sites exhibit
of the Hilbert spacdspanned by the vectofs),| 7)) that O dynamics at all for short times. For the calculations pre-

is exactly represented. sented in this paper, we have chosen2, but our observa-
To continue the sweep, a DMRG truncation is carried outions should be generic. | _
with U,|¢) being the target state instead jof). The key (i) The DMRGtruncation errordue to the representation

observation is that the new truncated basis is optimallyf the time-evolving quantum state in redudedbeit “opti-
adapted tdJ,|) and different from the one that would have Mally” chosen Hilbert spaces and to the repeated transfor-
been chosen foy). In contrast to the conventional static Mations between different truncated basis sets. While the
DMRG [19], the optimally represented Hilbert space hencelruncation errore that sets the scale of the error of the wave
follows the time evolution of the stafte(t)). function and operators is typically very small, her_e it will
Then basis transformations to the left or right are per_strongly accumulate a®(Lt/dt) truncations are carried out

formed, until the next part of Eq6) can be applied. We thus UP to timet. This is because the truncated DMRG wave
apply the full operator of Eq6) by sweeping the active site functlon has norm less than 1 and is renormgllzed at each
n through the system. The price to be paid is that a truncatioffuncation by a factor of(1-€)™*>1. Truncation errors
error is introduced at each iteration step of the sweep as ighould therefore accumulate roughly exponentially with an
known from static DMRG. exponent of eLt/dt, such that eventually the adaptive
To start time-dependent DMRG, some initial state has td-DMRG will break down at too long times. The error mea-
be prepared. There is no unique recipe, the most effectiveure we use here saturatesGiftl) and sets a limit on the
one depending on the desired initial state. The procedure wexponential growth; also, partial compensations of errors in
adopt for our initial statéini) is to calculate it as the ground Observables may slow down the error growth. The accumu-
state of a suitably chosen Hamiltoni&h,; (which in prin-  lated truncation error should decrease considerably with an
ciple does not have to have any physical significanBech  increasing number of kept DMRG states For a fixed time
a choice isH;,=2,B,S., with B,<0 for n on the left, and 1 it should decrease as the Trotter time stiéfis increased,
B,>0 for n on the right half of the chain. In this case, a @s the number of truncations decreases with the number of
physical picture foH;, does exist; it corresponds to switch- time stepst/dt.
ing on a magnetic field that aligns the spins and that is strong At this point, it is worthwhile to mention that our subse-

enough for all interactions in Eq1) to be negligible. quent error analysis should also be pertinent to the very
closely related time-evolution algorithm introduced by Ver-

straeteet al. [20], which differs from ours for the present
purpose in one major point: In our algorithm, a basis trunca-
tion is performed after eadocal application ofU,. In their

As so far no quantitative analysis of the accuracy of thealgorithm, truncations are performed after all local time evo-
adaptive t-DMRG has been given in the literature, we proJUtiOI’]S have been carried out, i.e., afteglabal time evolu-
vide a detailed error analysis for the time evolution of thetion using U=II,U,. In our iterative procedure, the wave
initial state|ini) in a spin% quantumXX chain, i.e.,J,=8  function after such a full time evolution is not guaranteed to
=0. This system is an excellent benchmark for the adaptiv®e theglobally optimal state representing the time-evolved
t-DMRG due to its exact solutiofb] that can be compared to state. However, for smadlt, the state update via the opera-
the DMRG results. The exact solution reveals a nontrivialtors U, is likely to be small, so we expect the global opti-
behavior with a complicated substructure in the magnetizalum to be rather well approximated using the present algo-
tion profile. From a DMRG point of view, this Hamiltonian fithm, as seems to be borne out by direct comparisons
is not too specific in the sense that the experience from statieetween both approachégl]. Errors should therefore ex-

DMRG suggests a relatively weak truncation error depenhibit very similar behavior. _ _
dence onJz We remind the reader that no error is encountered in the

application of the local time-evolution operattl, to the
state|), as is discussed after E€R).

IV. ACCURACY OF THE ADAPTIVE TIME-DEPENDENT
DMRG

A. Possible errors

Two main sources of error occur in the adaptive t-DMRG.
(i) The Trotter error due to the Trotter decomposition.
For annth-order Trotter decompositioii 8], the error made In this section, we analyze the errors from the adaptive
in one time stepit is of orderdt™*. To reach a given time ~ t-DMRG in the time evolution of th&XX model by compar-
one has to perfornt/dt time steps, such that in the worst ing it to the exact solutiorf5], with the ultimate goal of
case the error grows linearly in tinteand the resulting error  finding optimal DMRG control parameters to minimize the
is of order(dt)"t. In our setup of the Trotter decomposition, errors.
the error scales linearly with system sizeand overall it is We use two main measures for the error.
of order (dt)"Lt for the times of interest(Eventually, the (i) As a measure for the overall error, we consider the
error must saturate at a finite value, as measured quantitiesagnetization deviatiothe maximum deviation of the local

B. Error analysis for the XX model
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0.0001 | FIG. 3. Magnetization deviation as a function
RN of time for different Trotter time stepdt and for
10°% ﬂ// | m=50 DMRG states. At small timeggegion A in
_§ Ve the inse}, the deviation is dominated by the lin-
% 10_08 | [ diz05 —— o 30 B | early growing .Trotter. error .for small times. At
S, dt=0.25 ------ E later times(region B in the insgt much faster,
@ ol |01 &0 nonlinear growth of the deviation sets in at some
10 F | 4005 ------ z A . well-defined runaway timég. As shown in the
dt=0.033 ------ 2 inset,tg increases with increasindgf.
_12 dt=0.025 ------ 10
10 | dt=0.005 dt ]
runaway time = 0.02 0.04 0.06
10_14 ! ! ! ! ! !
0 10 20 fime 30 40
magnetization found by DMRG from the exact result, dominated by the Trotter error, but by the accumulated trun-
B cation error.
Amadt) = Max (S, pura(D) ~ (S exack) - 9) The two regimes A and B are very clearly separated by
In the present study, the maximum was typically found close0merunaway time 4, with regime A fort <tz and regime B
to the center of the chain. for t>1tg (a precise procedure for its determination will be

(i) As a measure which excludes the Trotter error, we us@utlined below. The runaway timey increases whedt is

the forth-back deviatiom\gg(t), which we define as the de- increased: Because the total number of Trotter time steps
viation between the initial statfni) and the states(t) t/dtis decreased, the accumulated truncation error decreases,

=U(-t)U(t)|ini), i.e., the state obtained by evolvirigi) to

some timet and then back ta=0 again. If we Trotter- 0-005
decompose the time evolution operatd¢-t) into odd and I
even bonds in the reverse order of the decompositidsi(of 0.004
the identity U(-t)=U(t)"* holds without any Trotter error, 0.003 I A

and the forth-back deviation has the appealing property to §
capture the truncation error only. In contrast to the magneti- ©
zation deviation, the forth-back error does not rely on the ~ 0.002 ;
existence of an exact solution.

As our DMRG setup does not allow easy access to the  0.001 ¢ 1
fidelity |(ini| ¢xg(t))|, we define the forth-back deviation to . error + |

be theL, measure for the difference of the magnetization 0l 7. . . . quadraticfit 7
profiles of|ini) and|eg(t)), 1230
gl 112 0.01}
Yee(t) = (2 [(ini[Sp[ini) - <¢FB(t)|Sﬁ|wFB(t)>]2) :
n ooog | B A
(10) 5
£0.006

In order to control Trotter and truncation error, two
DMRG control parameters are available, namely the number ~ 0.004
of DMRG statean and the Trotter time stegt.

+
To study the effect of varyingt, consider thenagnetiza- 0.002 1 error + |

tion deviationas shown in Fig. 3. Two main observations can 0 4 . quadratic fit—

be made. At small timegregime A, the magnetization de- 0 0.1 0.2 0.3 0.4 05

viation decreases witlt and is linear int as expected from dt

the Trotter error. Indeed, as shown in the upper part of Fig. 4, . 4. Magnetization deviation as a function of Trotter time
the magnetization deviation depends quadraticallydbfor  step gt (system sizeL=100,m=50 DMRG statesat timest=5
fixed t, and the Trotter error dominates over the truncationypper figur¢ andt=30 (lower figure. Fort=5, the magnetization
error. At large timegregime B, the magnetization deviation deviation is quadratic imit as expected from the Trotter error. For
is no longer linear irt, but grows almost exponentially, and t=30, at smaltit the magnetization deviation is no longer quadratic
also no longer shows simple monotonic behaviodinThe  in dtand larger than the Trotter error would suggest. This is a signal
magnetization deviation in this regime is obviously no longerof the contribution of the accumulated truncation error.
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FIG. 5. The forth-back erroEgg(t) for t=30 andt=50 as a FIG. 6. Magnetization deviatioAM(t) as a function of time for
function of dt. Here,L =100, m=50. different numbersn of DMRG states. The Trotter time interval is

fixed atdt=0.05. Again, two regimes can be distinguished: For
and the Trotter error increases, hence the competing two eearly times, for which the Trotter error dominates, the error is
rors break even later. slowly growing(essentially linearlyand independent ah (regime

This dt dependence df; is also seen in the lower part of A); for later times, the error is entirely given by the truncation error,
Fig. 4, where thalt dependence of the magnetization devia-which is m-dependent and growing fagilmost exponential up to
tion is plotted at some larger timg=30) than in the upper some saturation; regime)BThe transition between the two regimes
part.t=30 is larger than the runaway tintiee., in regime B occurs at a well-defined “runaway timeg (small squares The
for dt=<0.05, in regime A otherwise. We see indeed étr inset shows a monotonic, roughly linear dependenci oh m.
>0.05(region A the familiar quadratic Trotter error depen-
dence. For smaliit<0.05(region B), the deviation is domi-
nated by the accumulated truncation error that increasds as
decreases. This is reflected in the growth of the magnetiz
tion deviation agt is decreased.

The almost exponential growth of the truncation error
with the number of Trotter steps can also be seen from th
forth-back deviation that is not susceptible to the Trotter er-
ror. In Fig. 5, we show the forth-back deviatidgg(t) for
t=30 andt=50 as a function of the Trotter time steft.
Erg(t) increases as a consequence of the stronger accumul
tion of the truncation error with decreasing Trotter step siz
dt and hence an increasing number of stefos.

Let us now consider the dependence of the magnetizatio
deviation er¢t) on the second control parameter, the numbe
m of DMRG states. In Fig. 6, eff) is plotted for a fixed
Trotter time stelt=0.05 and different values of. In agree-

in time, but the accumulated truncation error grows almost
exponentially in time. The latter fact is shown in Fig. 7,
where the forth-back deviatidBeg(t) is plotted as a function
& t for some fixedm. Here, we find that the effects of the
truncation error are below machine precision fer10 and
then grow almost exponentially in time up to some satura-
ion.
By comparison, consider Fig. 8, wheEgg(t) is plotted as
a function ofm, for t=30 andt=50. An approximately ex-
ponential increase of the accuracy of the method with grow-
fﬁ’g m is observed for a fixed time. Our numerical results that
Sndicate a roughly linear time dependencetgibn m (inset
of Fig. 6) are the consequence of some balancing of very fast
rowth of precision withm and decay of precision with
Before concluding this section, let us briefly consider a
number of other possible effects that might affégt One

ment with our previous observations, somedependent ! ‘ ‘

“runaway time”tg separates two regimes: fortg (regime 04 L7100, M=40 e
A), the deviation grows essentially linearly in time and is X e
independent ofm; for t>tg (regime B, it suddenly starts to ool e - 3
grow more rapidly than any power law. The onset of a sig- § 0.00t¢ - ]
nificantm dependence has indeed been our operational defiz g o0 ]
nition of tg in Figs. 3 and 6. In the inset of Fig. G is seen % s

to increase roughly linearly with growing.. As m—o cor- ~ § 107°¢ do0 k1
responds to the complete absence of the truncation error, thg -6} ,
m-independent bottom curve of Fig. 6 is a measure for the | 1
deviation due to the Trotter error alone and the runaway time

can be read off very precisely as the moment in time when 1078} E
the truncation error starts to dominate. 1072, . i o

That the crossover from a dominating Trotter error at
short times and a dominating truncation error at long times is
so sharp may seem surprising at first, but can be explained FIG. 7. The forth-back erroEgg(t) for L=100,m=40,dt
easily by observing that the Trotter error grows only linearly=0.01, anddt=0.05 as a function of.

time
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T=30 +—
L=100, dt=0.05 T2
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1 Y ]
\ N 0.01}
01k X ]
8 N 0.0001 |-
= .
g X -
S 001 X J . -6
3 . 210
8 — - 53
o ~ X C
T 0.001p N ’ q -8
£ TR , g10
0.0001} N E 2 -10
et 10 |
_5 \\\
10 L B =12\ . Gt =0.05
—~— 10
-6 | :
10 . ‘ ‘ . . ‘ . . _1a]” dt =0.005 - - -
10 20 30 40 50 60 70 80 90 100 10 L . ! . . . ! ! .
number of kept states m 0 10 20 30 40 50

time
FIG. 8. The forth-back erroEgg(t) for t=50 andt=30 as a . . ) . .
function of m. Here.L =100 dt=0.05. FIG. 10. The lost weight in the density matrix truncation,
summed over time intervalst=0.1, is shown for the same param-

. . . . eters as in Fig. 3. A comparison with Fig. 3 reveals, however, that
might alternatively conceive that the well-defined runawayysth values are not useful criteria for the DMRG truncation error

time tg results from a sudden failureof stochastic or of  5ng are in particular not suited to reveal the runaway tigne
fundamental natujeof the truncation algorithm to capture
one important basis state. It can be refuted on the basis of .
Fig. 5, Fig. 7, and Fig. 8: Such an error should manifest itself® well below the maximum entanglement entrofa
as a pronounced step Erg(t), depending on the time evo- ~log,m that the DMRG can reproduce.

lution having gone pasti; or not. Such a step is, however Therefore, we conclude that the error at short times is
not observe%l 9 P ' P IS, ' dominated by the Trotter error, which is independentof

t, might also be thought to reflect a fundamental DMRGand approximately growing linearly with time. At some run-

limit, namely a growth of the entanglement within the time- away time, we observe a sharp crossover (o a regime in

. L . which the m-dependent and almost exponentially growing
evolved state which the limited number .Of DMRG. staters truncation error is dominating. This crossover is sharp due to
not able to capture adequatelytattg. This scenario can be

. drastically different growth of the two types of errors. The
excluded by_ observing the_ strong depenqlenceR(IIin the . runaway time thus indicates an imminent breakdown of the
number of time steps, which this scenario cannot explain, ; : .

ethod and is a good, albeit very conservative, measure of
Indeed, a study of the entanglement entropy between the le ilable simulation i Wi he ab |
and the right half of the chain available simulation times. We expect the above error analy-
sis for the adaptive t-DMRG to be generic for other models.
0 =Tr 5 loas 11 The truncation error will remain also in approaches that dis-
S(t) =Trplogzp, (11) pose of the Trotter error; maximally reachable simulation
times should therefore be roughly the same or somewhat

p being the reduced density matrix of the léfr equiva- shorter if other approximations enhance the truncation error.

lently the righy half of the chain, confirms this view: As
shown in Fig. 9,S.,(t) is only mildly growing with time and
C. Optimal choice of DMRG parameters

XX model: entropy of half chain How can the overall error—which we found to be a deli-
=L ' ' ' ' ' ' ' . cate balance between the Trotter and the accumulated trun-
g | L=100,M=50, T=50, dt=0.03 cation error—be minimized and the important runaway time
[}

] be found in practice? From the above scenario, it should be
expected that the truncated density matrix weight at each
step does not behave differently before or after the runaway
] time and hence is no immediately useful indicator to identify
the runaway time. This can in fact be seen from Fig. 10,
where the truncated weight is shown for the same parameters
] as in Fig. 3. Also, it is not obvious to extract a precise rela-
tionship between the truncation errors at each DMRG trun-
cation and the accumulated errors. Instead, a precise conver-
1 gence analysis im or dt seems to be more telling and easily
feasible.

0 10 20 30 40 50 Of course, it is desirable to choose the number of kept

statesm as large as possible within the constraints regarding

FIG. 9. Entanglement entrog, from Eq.(11) between the left  the available computer resources. This choice having been

and the right half of the chain as a function of time. made, the runaway timig is determined for different Trotter
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70 o FIG. 11. Left: Time evolution
‘ =40 of the absolute value of the local
magnetization(Si(t))| for the XX
= model as a density plot, where the
2) ] local magnetization itself is ex-
40 time 1 actly antisymmetric with regard to
the chain center. The lines of con-
stant magnetization ()
=+0.2,+0.4 are shown as solid
lines. As an illustration, local
10 1 magnetizationgS;(t)) for the time
= slices t=0 andt=40 are shown
0 o' ] explicitly. A steplike substructure
can be seen fot=40 in perfect
quantitative agreement with the
exact solution. Error bars are be-
low visibility.

60

50

30 -0.4

0 0.4 ‘ ' | ‘ t=0 1

time stepgt by comparing different values ofi as in Fig. 6.  with velocity v=1. On top of this overall scaling form, an
Only two slightly different values ofn are sufficient for that additional steplike substructure arises, which was analyzed
purpose. Now the Trotter time steipis chosen such that the in detail in [22]. It was found that while the step width
desired timet is just belowtg. This way, the optimal balance broadens as', the step height decreasesta®’, such that
between the Trotter error and the truncation error is foundthe integrated transported magnetization within each step re-
which corresponds in the lower part of Fig. 4 to the mini- Mains constant at 1. It was suggested that each of these steps
mum of ertt) on the border between regime A and B: The corresponds to a localized flipped spin flowing outwards.

total error would increase at largét due to the Trotter error, ' Ne€XXmodel, however, has several very special proper-
and at smalledt due to the truncation error. ties: It corresponds to a free-fermion model and is therefore

Thus, it is a good practice to choose for small times rathe?xacuy solvable; it is critical; and its total current operator
small values ofdt in order to minimize the Trotter error; for J=3yj, commutes with the Hamiltoniaf), H]=0. One may

large times, it makes sense to choose a somewhat coar%sﬂ(ﬁ\év:itfhtireg?; ?nboo(;/; 2?%”022 %r:nglrjii to any of the particu-

time interval, in order to push the runaway time to as large The adaptive t-DMRG allows us to study the long-time
values as possible. evolution of|ini) in different coupling regimes of E¢l). We

_In terms of numbers of time steps, we conclude fromgy,,qq 15 extensions of thex model, namely al¥’S inter-
Fig. 3 that for the present model and our parametérs action. and dimerization

=100-200, the adaptive time-dependent DMRG seems to |, Figs. 11 and 12, we visualize the time evolution of the

be able to perform about 1000-5000 time steps reliably evep, magnetization in density plots, with site indeon the

for m=50, depending on the desired level of accuracy, cory avis and timet on they axis. Here, the absolute value of

responding td(1004) in “real” time. We note that this is & e magnetization is shown as a grayscale and in lines of
very small value ofn by DMRG standards, and that using an ¢onstant magnetization &S,)|=0.2, 0.4. In Fig. 11, the re-
optimized code, one should be able to incremd®y an order 445 petween the density plots and the actual magnetization
of magnitude, and hence access much longer titogsan o ofile for the XX model is shown at two time¢=0 and
order of magnitude t=40. The exact solution is perfectly reproduced, including
the detailed substructure of the magnetization profile.

V. LONG-TIME PROPERTIES OF THE TIME EVOLUTION In Fig. 12, density plots for various values &fbetween

_ ) o o 0 and 1.1 are shown. For smdl{{J,< 1), we observe ballis-

In [5,22], the time evolution of the initial stat@i) onthe ¢ yransport of the magnetization. This regime is character-
XX chain at temperaturé=0 was examined in the long-time ;4 by 5 constant transport velocity of the magnetization,
limit using the exact solution. It was found that the magne-ance ‘the lines of constant magnetization shown in Fig. 12
tization S/(n,t) given in Eq.(4) can be described for long 416 approximately straight fod,<1. The magnetization
times in terms of a simple scaling functioB,(n,t) =®[(N  front propagation slows down a% increases, and almost
—nc)/t], wheren is the position of the chain center. The comes to a halt whed,> 1. Although the sharpness of this
scaling function is the solution of the partial differential crossover atl,=1 is surprising, its general nature can be
equation 4;S,+4,j(S)=0 with the magnetization current ynderstood from the limitsl,—0 and|J,|]—: For small
j(S)=1/mcogwS,| which has been shown to describe theJ,— 0, the S‘S* and 'Y interactions dominate. Being spin-
macroscopic time evolution of the magnetization profi¢  flip terms, they smear out the initially hard step profile in the
The characteristics, i.e., the lines of constant magnetization magnetization. For largd,, on the other hand, th&%

S,, have a slope =sin«S,|. interaction dominates. This term does not delocalize the step

The magnetization profil®[(n-n)/t] has a well-defined profile, and in the limit|J,|—, the initial state is even a
front at (n—ny)/t==%1, i.e., is moving outwards ballistically stationary eigenstate of the Hamiltonian.
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FIG. 12. Density plots of the magnetizatif{i§;,(t))| as in Fig. 11, the values df being(from left to right, top to bottorn0, 0.3, 0.6, 0.9,
1.0, 1.1, and5=0. For better visibility of the profile, the grayscale mappind(&(t))| was chosen differently in each plot as indicated by
the legends. Solid lines: lines of constant magnetizat&=+0.2, +0.4; these allow for a direct comparison of the magnetization transport
between differend,. The raylike structure indicates the “carriers.”
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m=60, L=200, dt=0.02 1.2
10 | fitted exponenta+ ]
1 4
+ +
+
0.8
=
D
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FIG. 13. The change in the magnetizatidM(t) is shown. The . . a
curves are plotted in the ordéy=0, 0.3, 0.6, 0.9, 1.0, 1.1, and 1.5, FIG. 14. Best fit for the exponentin AM(f)=t?, for the data

whereJ,=0 is the steepest. The curnv@s=0, 0.3, 0.6, and 0.9 show SOWN in Fig. 13 and for times betweéa20 andt=60. We esti-
the sarrzle linear behavior for the observéd tir’nes ’i ., U6 mate the uncertainty ia to be of the order of 0.1 due to the limited

time available(cf. Fig. 15. It was not possible to fit the slow

. oscillations forJ,=1.1. To the eye, however, the curve in Fig. 13
Besides the structure of the overall front, we also observgyggests slow oscillations around a constant value, hence we in-

for J,# 0 remnants of the steplike substructure from ¥%  cjuded in the data poira=0 for J,=1.1 by handencircled.
model, individual pockets of transported magnetization at
velocity 1, which we call “carriers.” Ag, is increased, these sive or diffusive transport in the time range under consider-
carriers keep the velocity= 1, but are increasingly damped ation.
and thus less and less effective in transporting magnetization. The proposed crossover from ballistic to almost no trans-
In order to put the above observations on a more quantiport is also visible in the expectation value of the current
tative footing, we plot in Fig. 13 the integrated flow of mag- j,=J,Im(S;S;,,0)). For J,=5=0, it is known [5] that the
netization through the center, current at the middle of the chain approaches a finite value as
t—oo. This is only possible for ballistic transport. In the case
¢ L of (sub/supediffusive transport or constant/oscillatory mag-
AM(t):f (uptNdt = ) (SM)y+1/2). (12 netization, on the other hand, the central current must fall off
0 n>L/2 to zero as the magnetization gradient flattens or must even
become negative to allow for the oscillations.

This quantity has the advantage that unlike the lines of con- This expected behavior is seen.in Fig. 17, v_vhere we plot
qhe current at the center of the chain as a function of time for

stant magnetization in Figs. 11 and 12, it shows the overall = | o b 0 and 11 W d th
spin transport without being too biased by single “carriers.”Varous vaiues ow, etyveen » and 1.1. We average the
We observe in Fig. 13 roughly linear behavior &KI(t) current over the five middle sites in order to filter out local

for |3 <1, which suggests ballistic magnetization tralnSIOOrtcurrent oscillations. We observe that for relatively long

at least on the time scales accessible to usJAscreases, times, the current approaches a constant valugJipr 1,
magnetization transport slows down until aroufg1 the vv_hgreas the current fqlls off rapidly and then seems to ex-
behavior changes drastically: Fdg>1, AM(t) seems to hibit damped oscillations around zero fdd,|>1. This
saturate at a finite value, around which it oscillates. On the L=60, L=200, dt=0.02
time scales accessible to us, we thus find a sharp crossover at 10
J,=1 from ballistic transport to an almost constant magneti-
zation.

This crossover is even more clearly visible in Fig. 14,
where we plot the exponert of the magnetizationAM(t)
«t?, for valuesJ, between 0 and 1.5. Here, the exponeis ;
close to 1 forJ,< 1, confirming the roughly linear transport, §
and quickly drops to zero in the regime of constant magne-
tization for J,>1.

Figure 15 illustrates how the exponentvas obtained, for
the special casd,=1. Here the exponerd=0.6+0.1 indi-
cates that the magnetization transport is clearly not ballistic

0.1 L
anymore. In fact, we find from a scaling plot Fig. 16 that for 0.1 1 e 10
long times the magnetization collapses best for a scaling
function of the formS,(n,t) ~ #(n/t°% with an uncertainty FIG. 15. J,=1: The change of the magnetization in a double

in the exponent of approximately 0.1, indicating superdiffu-logarithmic plot with an algebraic fit.
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We now study the influence of a nonzero dimerizat®n

0.5 e + in Eq. (1). We restrict our analysis to the cadg=0. The
% 80 o dime'rized. models can still be described in terms of the free-
0.3 % - fermion picture and are exactly solvali®r static proper-
?% ties, see[12]). The current, however, is not conserved for
0.1 % nonzero dimerization. This example will shed light on the
A % question of whether the long-time limit depends on current
® % conservation or on the free-fermion property, or on yet other
-0.1 % special properties of the system. As the dimerized case is
% also exactly solvable, the results could have been obtained
-0.3 % also analytically, for example by utilizing the results for the
k Fourier transformation of the magnetizati¢®(q,t)) of Ref.
_05 [6]. We expect two obvious effects of nonzero dimerization.

-3 -2 -1 First, the overall front velocity should slow down, because

the magnetization now propagates faster on half of the links,

FIG. 16. J,=1: Collapse of magnetization for a superdiffusive but slower on the other half, the net effect being a reduction

scaling form(x/t%). of t_he total velo<:|ty_. Sec_ondly, we expect _oscnlatlons W_|th_ a
period of two lattice sites. This is obvious in the limit

strengthens our previous conclusion of a crossover from baé— 1, where each strongly coupled pair of sites can be

listic transport to a more or less constant magnetization atiewed as an almost isolated subsystem, in which the mag-

[3,]=1. netization oscillates back and forth. We expect remnants of
Remarkably, this crossover for the behavior of a high-this behavior also at dimerizations <1. . .
energy quantum staténi) is found at the locatiord,=1 of The data shown in Fig. 18 confirm this expectation quali-

the quantum phase transition from the critical phase to théatively, but do not reveal any other qualitative change of the
Néel antiferromagnetic Stat@ee F|g J_’ a priori a low- |Ong-time limit for nonzero dimerization. Faf=1, the Sys-
energy event. To understand the subtle connection betwedfM is trivially given by isolated pairs of neighboring sites,
the time evolution ofiini) and the phase transition, we ex- therefore the propagation velocity drops to zero.
ploit that the time evolution does not depend on the sign of Figures 19 and 20 reveal explicitly that no qualitative
J,, as discussed in Sec. II. Therefore, the time evolution ofhange occurs as the dimerization is switched on: the change
the high-energy statBni) for J,>1 is identical to that for in magnetizatiom\M(t) still shows the linear behavior typi-
J.=-J,<-1, wherelini) is a low-energy state. At the quan- cal of ballistic transport. For increasiy— 1, oscillations on
tum phase transition from the ferromagnetic state to thdop of this linear behavior arise. We find that switching on
critical phase atl,=-1, the ground state, a kink state for finite_dimerizatipn does not change the long-time behavior of
J. < -1 (if we impose the boundary condition spin up on thethe time evolution also for nonzerd (not shown. In par-

left boundary and spin down on the right boundafy4], ticular, the time evolution here is drastically influenced by
changes drastically to a state with no kink and power-lawthe transition atl,=1, as in the casé=0 discussed above.
correlations forJ,>-1. Therefore, our initial state is very ~ To summarize, we find the same long-time behavior of the
close to an eigenstate—the ground state—Ipr -1, but  initial state[7---7 | ---|) in the dimerized system—a sys-
not for J,>-1. Thus, the harsh change in the time evolutiont€M with a gapped excitation spectrum and which is exactly
of the high-energy statini) atJ,=1 can be explained by the Solvable—as in the system with sm&fS’ interaction,|J;
severe change in the ground-state propertied,at-1, and ~<1—a system which 'is critical—whereas the behavior
the crossover is linked to a quantum phase transition at §hanges drastically for Iarg@fo|nteract|on,|JZ|>1. Hence
different location in the phase diagram. we cannot attribute the ballistic transport of the magnetiza-
tion to the specific properties of théX model, neither to
being exactly solvable, nor to the continuous spectrum, nor
to the conserved current in the&X model. The drastic change
at|J,/]=1 stems from the special property of the initial state to
resemble the ground state in the ferromagnetic phase and the
highest-energy state in the antiferromagnetic phase.

Finally, let us include a note on the errors in the present
analysis. A convergence analysisnmas in Sec. IV shows
that the errors and the runaway time are roughly the same as
for the XX model. The plot in Fig. 12 goes up to time
t=95, whereas the runaway ting is somewhat earlier,
tr=60-80, depending on the precise valuelpfindeed, a
convergence analysis im reveals that the accuracy in the
central region decreases for tg. For dimerized models, the
runaway timetg is somewhat shortefbetweentz=40 and

FIG. 17. Current, averaged over the five middle sites, for vari-tg=80 for m=50, depending on the dimerizatjoThis fact
ous values ofl, between 0 and 1.1. reflects the reduced accuracy of the DMRG algorithm when

current on middle 5 sites

0 10 20 30 40 50 60
time
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time

60 70 80 90 100 110 120 130 140 60 70 80 80 100 110 120 130 140

time time

time

60 70 80 90 100 110 120 130 140

(e) 0 0.1 0.2 0.3 0.4 05 U] 0.1 0.2 0.3

FIG. 18. Density plots of the magnetizati¢g(t)) as in Fig. 12, for dimerizatiofrom left to right, top to bottom §=0, 0.2, 0.4, 0.6,
0.8, 1.0, andl,=0. The grayscale mapping is different in each plot as indicated by the legends. Solid lines: lines of constant magnetization
(§)=%0.2, +0.4.
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FIG. 20. Best fit for the exponerat in AM(t) «t?, for the data

FIG. 19. Change in magnetizatidiM (t) for different dimeriza- shown in Fig. 13 and for times between20 andt=40.

tions, from top to bottoms=0, 0.2, 0.4, 0.6, 0.8, and 1.0.

deall o L long-time behavior at the phase transitiys 1 can be attrib-

ealing with inhomogenous systems. As always, it is pos- he cl blan f the initial state to the around

sible to increaseg by increasingm. uted to the close resemblance of the initial state to the grou
state forJ,<-1.

Our error analysis for the adaptive time-dependent
VI. CONCLUSIONS DMRG shows that for small times, the error is dominated by
the Trotter error, whereas for long times, the truncation error
becomes the most important. This finding should be general
and hold for nonexactly solvable models as well, and should
therefore allow us to control the accuracy of the results of
adaptive time-dependent DMRG in general models. Overall,
e find this method to be very precise at relatively long
mes.

We have investigated the evolution of the initial state
[T---171---1) under the effect of nearest-neighbor interac-
tions with the adaptive time-dependent DMRG.

For weakS'S interaction, i.e.|J,|<1 in Eq. (1), and ar-
bitrary dimerization, 6= <1, we find that for long times
the transport of the magnetization is ballistic as it was found.
for the XX model[5]. The magnetization profile shows the
same scaling form for long times, i.68%(n,t)=¢[(n—n)/t],
wheren, is the position of the chain center, but with different
scaling functionse. For strongerS'S interaction, i.e.,|J,] U.S. wishes to thank the Aspen Center for Physics, where
>1, even in a homogeneous systeds,0, a drastic change parts of this work were completed, for its hospitality. The
in the long-time evolution is seen. The magnetization transauthors are grateful for discussions with Joel Lebowitz, Her-
port is no longer ballistic, but shows oscillatory behaviorbert Spohn, Hans-Jiirgen Mikeska, Attila Rakos, lan McCul-
around a constant value. Hence our results suggest that thech, Zoltan Racz, and Vladislav Popkov. C.K. and U.S. ac-
specific properties of th&XX model are not responsible for knowledge support by the Studienstiftung des deutschen
ballistic transport at long times. The drastic change in thévolkes and the Young Academy, Berlin, respectively.
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